A Continuous Flow-Maximisation Approach to Connectivity-Driven Cortical Parcellation

نویسندگان

  • Sarah Parisot
  • Martin Rajchl
  • Jonathan Passerat-Palmbach
  • Daniel Rueckert
چکیده

Brain connectivity network analysis is a key step towards understanding the processes behind the brain’s development through ageing and disease. Parcellation of the cortical surface into distinct regions is an essential step in order to construct such networks. Anatomical and random parcellations are typically used for this task, but can introduce a bias and may not be aligned with the brain’s underlying organisation. To tackle this challenge, connectivity-driven parcellation methods have received increasing attention. In this paper, we propose a flexible continuous flow maximisation approach for connectivity driven parcellation that iteratively updates the parcels’ boundaries and centres based on connectivity information and smoothness constraints. We evaluate the method on 25 subjects with diffusion MRI data. Quantitative results show that the method is robust with respect to initialisation (average overlap 82%) and significantly outperforms the state of the art in terms of information loss and homogeneity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity

Reliable cortical parcellation is a crucial step in human brain network analysis since incorrect definition of nodes may invalidate the inferences drawn from the network. Cortical parcellation is typically cast as an unsupervised clustering problem on functional magnetic resonance imaging (fMRI) data, which is particularly challenging given the pronounced noise in fMRI acquisitions. This challe...

متن کامل

Tractography-Driven Groupwise Multi-scale Parcellation of the Cortex

The analysis of the connectome of the human brain provides key insight into the brain's organisation and function, and its evolution in disease or ageing. Parcellation of the cortical surface into distinct regions in terms of structural connectivity is an essential step that can enable such analysis. The estimation of a stable connectome across a population of healthy subjects requires the esti...

متن کامل

Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex

Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be us...

متن کامل

Connectivity-Driven Parcellation Methods for the Human Cerebral Cortex

The macro connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform cognitive functions. It embodies the notion of representing, analysing, and understanding all connections within the brain as a network, while the subdivision of the brain into interacting cortical units is inherent in its architecture. As a result, the definiti...

متن کامل

Boundary Mapping Through Manifold Learning for Connectivity-Based Cortical Parcellation

The study of the human connectome is becoming more popular due to its potential to reveal the brain function and structure. A critical step in connectome analysis is to parcellate the cortex into coherent regions that can be used to build graphical models of connectivity. Computing an optimal parcellation is of great importance, as this stage can affect the performance of the subsequent analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015